3.Machine Learning with Python
1) 数据说明
Id
Cl.thickness
Cell.size
Cell.shape
Marg.adhesion
Epith.c.size
Bare.nuclei
Bl.cromatin
Normal.nucleoli
Mitoses
Class
2) Load python packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve,auc3) 数据预处理
4) 数据集划分
5) 特征选择
5.1) RFE
5.2) exhaustive enumeration
6) 评估模型效果

7) Homework
7.1)
7.2)
Last updated
Was this helpful?