Bioinformatics Tutorial
Files Needed
Advanced Training
Courses
Search
⌃
K
Links
Bioinformatics Tutorial
Getting Started
Part I. Basic Skills
1.Setup
2.Linux
3.R
4.Python
PART II. BASIC ANALYSES
1.Blast
2.Conservation Analysis
3.Function Analysis
4.Clinical Analyses
Part III. NGS DATA ANALYSES
1.Mapping
2.RNA-seq
2.1.Expression Matrix
2.2.Differential Expression with Cufflinks
2.3.Differential Expression with DEseq2 and edgeR
3.ChIP-seq
4.Motif
5.RNA Network
6.RNA Regulation - I
7.RNA Regulation - II
8.cfDNA
Part IV. MACHINE LEARNING
1.Machine Learning Basics
2.Machine Learning with R
3.Machine Learning with Python
Part V. Quiz
1.Precision Medicine - exSEEK
2.RNA Regulation - RiboShape
3.Single Cell Data Analysis
Appendix
Appendix I. Keep Learning
Appendix II. Databases & Servers
Appendix III. How to Backup
Appendix IV. Teaching Materials
Appendix V. Software and Tools
Appendix VI. Genome Annotations
Powered By
GitBook
Comment on page
2.RNA-seq
常规RNA-seq最直接的作用在于对基因表达进行定量。在本章中我们主要来讨论和基因表达定量相关的RNA-seq数据分析。
1) Table of Contents
2.1 Expression Matrix
2.2 Differential Expression with Cufflinks
2.2 Differential Expression with DEseq2 and edgeR
2.4 Alternative Splicing
2) Recommended Tools for RNA-seq
Raw Data QC and preprocessing (请参考
mapping
一节)
fastqc
cutadapt
trim_galore
fastp
fastx_toolkit
Spliced Mapping/Alignment (请参考
mapping
一节)
hisat2
STAR
Differential analysis:
DESeq2
: 利用负二项分布广义线性模型进行差异分析
edgeR
: 和DESeq2类似,利用负二项分布广义线性模型进行差异分析。
limma
: 最早针对microarray数据开发的差异分析工具。开发者后来又进行了多次改进使其也适用于RNA-seq的分析。
3) Pipelines for RNA-seq
RNA-seq analysis pipeline
(
Best practices on the differential expression analysis of multi-species RNA-seq
-
Genome Biology 2021
)
lncRNA analysis pipeline
4) Teaching Videos
see Videos in the
Files needed
5) References
A survey of best practices for RNA-seq data analysis
--
Genome Biology
2016
Best practices on the differential expression analysis of multi-species RNA-seq
-
Genome Biology 2021
Previous
1.2 bedtools and samtools
Next
2.1.Expression Matrix
Last modified
1yr ago