Bioinformatics Tutorial - Basic
Files Needed
Advanced Training
Courses
Search…
Bioinformatics Tutorial - Basic
Getting Started
Part I. Basic Skills
1.Setup
2.Linux
3.R
4.Python
PART II. BASIC ANALYSES
1.Blast
2.Conservation Analysis
3.Function Analysis
4.Clinical Analyses
Part III. NGS DATA ANALYSES
1.Mapping
2.RNA-seq
2.1.Expression Matrix
2.2.Differential Expression with Cufflinks
2.3.Differential Expression with DEseq2 and edgeR
2.4.Alternative Splicing
3.ChIP-seq
4.Motif
5.Network
6.RNA Regulation Analyses
Part IV. MACHINE LEARNING
1.Machine Learning Basics
2.Machine Learning with R
3.Machine Learning with Python
Part V. Quiz
1.Precision Medicine - exSEEK
2.RNA Regulation - RiboShape
Appendix
Appendix I. Keep Learning
Appendix II. Databases & Servers
Appendix III. How to Backup
Appendix IV. Teaching Materials
Appendix V. Software and Tools
Appendix VI. Genome Annotations
Powered By
GitBook
2.RNA-seq
常规RNA-seq最直接的作用在于对基因表达进行定量。在本章中我们主要来讨论和基因表达定量相关的RNA-seq数据分析。
1) Table of Contents
2.1 Expression Matrix
2.2 Differential Expression with Cufflinks
2.2 Differential Expression with DEseq2 and edgeR
2.4 Alternative Splicing
2) Recommended Tools for RNA-seq
Raw Data QC and preprocessing (请参考
mapping
一节)
fastqc
cutadapt
trim_galore
fastp
fastx_toolkit
Spliced Mapping/Alignment (请参考
mapping
一节)
hisat2
STAR
Differential analysis:
DESeq2
: 利用负二项分布广义线性模型进行差异分析
edgeR
: 和DESeq2类似,利用负二项分布广义线性模型进行差异分析。
limma
: 最早针对microarray数据开发的差异分析工具。开发者后来又进行了多次改进使其也适用于RNA-seq的分析。
3) Pipelines for RNA-seq
RNA-seq analysis pipeline
(
Best practices on the differential expression analysis of multi-species RNA-seq
-
Genome Biology 2021
)
lncRNA analysis pipeline
4) Teaching Videos (
link
)
PART III: Differential Expression
PART III: Alternative Splicing
5) References
A survey of best practices for RNA-seq data analysis
--
Genome Biology
2016
Best practices on the differential expression analysis of multi-species RNA-seq
-
Genome Biology 2021
Previous
1.2 bedtools and samtools
Next
2.1.Expression Matrix
Last modified
5mo ago
Copy link
Edit on GitHub
Outline
1) Table of Contents
2) Recommended Tools for RNA-seq
3) Pipelines for RNA-seq
4) Teaching Videos (link)
5) References