Bioinformatics Tutorial
Files Needed
  • Getting Started
    • Setup
    • Run jobs in a Docker
    • Run jobs in a cluster [Advanced]
  • Part I. Programming Skills
    • 1.Linux
      • 1.1.Basic Command
      • 1.2.Practice Guide
      • 1.3.Linux Bash
    • 2.R
      • 2.1.R Basics
      • 2.2.Plot with R
    • 3.Python
  • PART II. BASIC ANALYSES
    • 1.Blast
    • 2.Conservation Analysis
    • 3.Function Analysis
      • 3.1.GO
      • 3.2.KEGG
      • 3.3.GSEA
    • 4.Clinical Analyses
      • 4.1.Survival Analysis
  • Part III. NGS DATA ANALYSES
    • 1.Mapping
      • 1.1 Genome Browser
      • 1.2 bedtools and samtools
    • 2.RNA-seq
      • 2.1.Expression Matrix
      • 2.2.Differential Expression with Cufflinks
      • 2.3.Differential Expression with DEseq2 and edgeR
    • 3.ChIP-seq
    • 4.Motif
      • 4.1.Sequence Motif
      • 4.2.Structure Motif
    • 5.RNA Network
      • 5.1.Co-expression Network
      • 5.2.miRNA Targets
      • 5.3. CLIP-seq (RNA-Protein Interaction)
    • 6.RNA Regulation - I
      • 6.1.Alternative Splicing
      • 6.2.APA (Alternative Polyadenylation)
      • 6.3.Chimeric RNA
      • 6.4.RNA Editing
      • 6.5.SNV/INDEL
    • 7.RNA Regulation - II
      • 7.1.Translation: Ribo-seq
      • 7.2.RNA Structure
    • 8.cfDNA
      • 8.1.Basic cfDNA-seq Analyses
  • Part IV. MACHINE LEARNING
    • 1.Machine Learning Basics
      • 1.1 Data Pre-processing
      • 1.2 Data Visualization & Dimension Reduction
      • 1.3 Feature Extraction and Selection
      • 1.4 Machine Learning Classifiers/Models
      • 1.5 Performance Evaluation
    • 2.Machine Learning with R
    • 3.Machine Learning with Python
  • Part V. Assignments
    • 1.Precision Medicine - exSEEK
      • Help
      • Archive: Version 2018
        • 1.1.Data Introduction
        • 1.2.Requirement
        • 1.3.Helps
    • 2.RNA Regulation - RiboShape
      • 2.0.Programming Tools
      • 2.1.RNA-seq Analysis
      • 2.2.Ribo-seq Analysis
      • 2.3.SHAPE Data Analysis
      • 2.4.Integration
    • 3.RNA Regulation - dsRNA
    • 4.Single Cell Data Analysis
      • Help
  • 5.Model Programming
  • Appendix
    • Appendix I. Keep Learning
    • Appendix II. Databases & Servers
    • Appendix III. How to Backup
    • Appendix IV. Teaching Materials
    • Appendix V. Software and Tools
    • Appendix VI. Genome Annotations
Powered by GitBook
On this page
  • 1) Table of Contents
  • 2) Files Needed
  • 3) Teaching Videos

Was this helpful?

Edit on GitHub
  1. PART II. BASIC ANALYSES

3.Function Analysis

Previous2.Conservation AnalysisNext3.1.GO

Last updated 2 years ago

Was this helpful?

1) Table of Contents

  • 当我们找到一些感兴趣的基因后(比如在某种处理条件下,与对照相比,表达量有明显差异的基因),我们希望能从这些基因中提炼出生物学意义,即根据一些已有的知识判断这些基因和哪些生物学功能是有相关性的。

  • 人们可以根据已有的生物学知识把基因注释到不同的功能或通路中,这样每个通路或功能都会对应一个基因集合(gene set),GO和KEGG等就是这样的例子。根据特定领域的专家知识,也可以自己定义一些基因集合。

  • 本章中我们将介绍评估在某种处理后发生变化的基因和已知生物学功能的关系的两类方法:

2) Files Needed

3) Teaching Videos

一类是所谓的over representation analysis,给定一个基因集合(如表达量显著上升的基因),通过评估该基因集合和已知对应各种功能/通路的基因集合的重叠程度,判断该基因集合富集到哪些功能。和就属于这类分析。

另一类是以GSEA(gene set enrichment analysis)为代表的打分方法,按某种指标(如某种处理后基因表达的fold change)对所有基因进行排序,得到一个ranked list,再通过统计检验判断已知对应各种功能/通路的基因集合富集在ranked list前端,后端,还是没有富集,从而判断各个通路与实验处理产生的变化有正相关,负相关还是不相关。我们将在中进行介绍。

更多内容请参考

本章不需要使用docker,所用到的文件可以直接从 中的Files/ 路径下的相应文件夹中下载。

see Videos in the

3.1 GO
3.2 KEGG
3.3 GSEA
Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges
Files needed
Files needed
3.1 GO
3.2 KEGG
3.3 GSEA
Fig 1. Overview of existing pathway analysis methods using gene expression data as an example